

Лабораторная работа № 3 Построение модели последовательности освоения учебного материала

Цель работы

Освоение принципов построения модели последовательности освоения материала, включающих разработку матрицы отношений очередности, матрицы и графа логических связей.

Порядок выполнения работы

- 1. Изучить теоретический материал, составить алгоритм (блок-схему) и написать программу для формирования матрицы отношений очередности и матрицы логических связей (полной и краткой).
- 2. На основании разработанной линейной модели обучающей системы, сформировать матрицу отношений очередности учебных элементов.
- 3. Провести обработку матрицы отношений очередности и построить последовательность изучения учебного материала в виде списка учебных элементов.
- 4. Сформировать матрицу логических связей учебных элементов.
- 5. Сформировать граф логических связей учебных элементов.

Подготовить отчет, содержащий:

- 1. Титульный лист
- 2. Введение (краткая информация о модели освоения учебного материала)
- 3. Описать словесно взаимосвязи между темами линейной модели обучающей системы и последовательность их изучения.
- 4. Описать алгоритм построения матриц
- 5. Привести программный код, приводящий к построению матрицы отношений и матрицы логических связей.
- 6. Отобразить матрицу отношений очередности.
- 7. Отобразить матрицу логических связей
- 8. Построить и отобразить в отчете граф логических связей.
- 9. Сделать выводы

Пример построения матриц отношений очередности учебных элементов, логических связей учебных элементов и графа логических связей для учебного курса "Основы теории вероятности и алгебры событий".

Учебный материал разбивается на 11 тем:

- 1. События. Алгебра событий
- 2. Вероятность событий
- 3. Теорема сложения вероятностей
- 4. Теорема умножения вероятностей
- 5. Вероятность появления хотя бы одного события
- 6. Умножение вероятностей зависимых событий
- 7. Сложение вероятностей совместных событий
- 8. Формула полной вероятности
- 9. Формула Байеса
- 10. Формула Бернулли
- 11. Тестовый контроль

Пусть темы изучаются в том порядке, в котором они перечислены. Тогда матрица отношений очередности примет вид (рис. 1):

	1	2	3	4	5	6	7	8	9	10	11	Σ
1	1											1
2	1	1										2
3	1	1	1									3
4	1	1	1	1								4
5	1	1	1	1	1							5
6	1	1	1	1	1	1						6
7	1	1	1	1	1	1	1					7
8	1	1	1	1	1	1	1	1				8
9	1	1	1	1	1	1	1	1	1			9
10	1	1	1	1	1	1	1	1	1	1		10
11	1	1	1	1	1	1	1	1	1	1	1	11

Рис.1. Матрица отношений очередности

Матрицу логических связей можно представить в двух видах: полном (рис. 2) и сокращенном (рис. 3).

	1	2	3	4	5	6	7	8	9	10	11
1											
2	1										
3	1	1									
4	1	1									
5	1	1		1							
6	1	1		1							
7	1	1	1	1							
8	1	1	1	1		1					
9	1	1	1	1		1		1			
10	1	1									
11	1	1	1	1	1	1	1	1	1	1	

Рис. 2. Полная матрица логических связей

	1	2	3	4	5	6	7	8	9	10	11
1											
2	1										
3	1										
4		1									
5				1							
6				1							
7			1	1							
8			1			1					
9								1			
10		1									
11					1		1		1	1	

Рис. 3. Сокращенная матрица логических связей

Сокращенная матрица строится из полной исключением лишних связей. Например, для изучения 5-го учебного элемента обучаемый должен сперва изучить 4-й учебный элемент (теорема умножения вероятностей), 2-й учебный элемент (вероятность события) и 1-й учебный элемент (события, алгебра событий) (см. рис. 2). Но для изучения 4-го учебного элемента также требуется знание 2-го и 1-го учебных элементов. Поэтому из связей 5-го учебного элемента можно исключить прямую связь с 1-м и 2-м учебными элементами. Косвенно связь с ними сохраняется через 4-й учебный элемент (рис. 3).

Соответственно, можно построить полный и сокращенный графы логических связей. Здесь будет приведен только сокращенный граф (рис. 4).

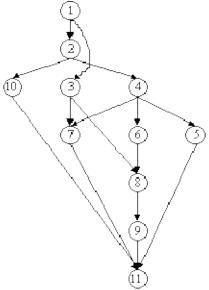


Рис. 4. Сокращенный граф логических связей

Полный граф логических связей строится аналогично по полной матрице логических связей